Skip to main content

Improving within-genus tree species discrimination using the discrete wavelet transform applied to airborne hyperspectral data

Buy Article:

$63.00 plus tax (Refund Policy)


Discrete wavelet analysis was assessed for its utility in aiding discrimination of three pine species (Pinus spp.) using airborne hyperspectral data (AVIRIS). Two different sets of Haar wavelet features were compared to each other and to calibrated radiance, as follows: (1) all combinations of detail and final level approximation coefficients and (2) wavelet energy features rather than individual coefficients. We applied stepwise discriminant techniques to reduce data dimensionality, followed by discriminant techniques to determine separability. Leave-one-out cross validation was used to measure the classification accuracy. The most accurate (74.2%) classification used all combinations of detail and approximation coefficients, followed by the original radiance (66.7%) and wavelet energy features (55.1%). These results indicate that application of the discrete wavelet transform can improve species discrimination within the Pinus genus.

Document Type: Research Article


Affiliations: Department of Forest Resources and Environmental Conservation,Virginia Polytechnic Institute and State University, BlacksburgVA24061, USA

Publication date: 2011-07-10

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more