Skip to main content

Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects

Buy Article:

$59.35 plus tax (Refund Policy)


This study used geographic object-based image analysis (GEOBIA) with very high spatial resolution (VHR) aerial imagery (0.3 m spatial resolution) to classify vegetation, channel and bare mud classes in a salt marsh. Three classification issues were investigated in the context of segmentation scale: (1) a comparison of single- and multi-scale GEOBIA using spectral bands, (2) the relative benefit of incorporating texture derived from the grey-level co-occurrence matrix (GLCM) in classifying the salt marsh features in single- and multi-scale GEOBIA and (3) the effect of quantization level of GLCM texture in the context of multi-scale GEOBIA. The single-scale GEOBIA experiments indicated that the optimal segmentation was both class and scale dependent. Therefore, the single-scale approach produced an only moderately accurate classification for all marsh classes. A multi-scale approach, however, facilitated the use of multiple scales that allowed the delineation of individual classes with increased between-class and reduced within-class spectral variation. With only spectral bands used, the multi-scale approach outperformed the single-scale GEOBIA with an overall accuracy of 82% vs. 76% (Kappa of 0.71 vs. 0.62). The study demonstrates the potential importance of ancillary data, GLCM texture, to compensate for limited between-class spectral discrimination. For example, gains in classification accuracies ranged from 3% to 12% when the GLCM mean texture was included in the multi-scale GEOBIA. The multi-scale classification overall accuracy varied with quantization level of the GLCM texture matrix. A quantization level of 2 reduced misclassifications of channel and bare mud and generated a statistically higher classification than higher quantization levels. Overall, the multi-scale GEOBIA produced the highest classification accuracy. The multi-scale GEOBIA is expected to be a useful methodology for creating a seamless spatial database of marsh landscape features to be used for further geographic information system (GIS) analyses.

Document Type: Research Article


Affiliations: 1: Center for Remote Sensing and Mapping Science (CRMS), Department of Geography, The University of Georgia, Athens, GA, USA 2: Department of Geology and Geography, West Virginia University, Morgantown, WV, USA 3: Marine Extension Service, The University of Georgia, Athens, GA, USA

Publication date: May 1, 2011

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more