Skip to main content

Detection and classification of invasive saltcedar through high spatial resolution airborne hyperspectral imagery

Buy Article:

$63.00 plus tax (Refund Policy)


We evaluated the performance of airborne HyperSpecTIR (HST) images for detecting and classifying the invasive riparian vegetation saltcedar along the Muddy River in Clark County, Nevada. HyperSpecTIR image reflectance spectra (227 bands, 450-2450 nm) were acquired for the following four vegetation covers: invasive saltcedar, native honey mesquite, grassland patches and crops. We compared five feature reduction approaches: band selection based on Jeffreys-Matusita distance, principal component analysis (PCA), minimum noise fraction (MNF), segmented principal component transform (SPCT) and segmented minimum noise fraction (SMNF). In addition, maximum likelihood (ML) and two spectral angle mapper (SAM) classifiers were applied to all extracted bands or features. Classification accuracies were compared among all classification approaches. Although the overall accuracy of maximal likelihood classifiers generally surpassed that of SAM classifiers, the highest overall accuracy was achieved by a SMNF-SAM combination with adjusted angular thresholds for classes. We concluded that high spectral and spatial resolution imagery can be used to detect and classify invasive saltcedar in this arid area.

Document Type: Research Article


Affiliations: 1: Department of Geography, Geology and Planning, Missouri State University, Springfield, MO, USA 2: Department of Geography, University of Nevada at Reno, NV, USA

Publication date: 2011-04-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more