Skip to main content

A coupled Land Atmosphere Radiative-Transfer Model (LA-RTM) for multi-frequency passive microwave remote sensing: development and application over Wakasa Bay and the Tibetan Plateau

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Multi-frequency passive microwave sensors herald a new dawn for combined land and atmosphere observations. Past efforts to utilize microwave remote sensing of atmosphere and land surface have proceeded by treating these two areas in a parallel fashion. In this research, a unified approach is presented that can be used to improve both quantitative and qualitative understanding of land and atmosphere constituents. A coupled Land Atmosphere Radiative-Transfer Model (LA-RTM) that can be used as a forward model in retrieval algorithms, or as an observation operator in data-assimilation schemes is developed. This model is validated using data collected during the 2003 Advanced Microwave Scanning Radiometer on board the Earth Observing Satellite (AMSR/AMSR-E) validation experiment over Wakasa Bay in Japan and the Coordinated Enhanced Observing Period (CEOP) dataset for the Tibetan Plateau collected in April and August 2004. These datasets comprise satellite (AMSR-R) observations, ground-based microwave radiometers (GBMRs) and radiosonde atmosphere soundings. In both sites, good agreement between simulated and observed brightness temperatures is demonstrated. To facilitate fast retrievals, a retrieval scheme is proposed that uses LA-RTM as a forward model to generate a look-up table (LUT) for varying land-surface conditions. This LUT is used to retrieve soil-moisture and surface-roughness conditions for the target site. Using this scheme, retrieved soil moisture at in situ stations was shown to have fairly good agreement with observations.

Document Type: Research Article

DOI: https://doi.org/10.1080/01431161003621627

Affiliations: 1: Department of Geomatic Engineering and Geospatial Information Systems, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya 2: Department of Civil Engineering, River and Environmental Engineering Laboratory, University of Tokyo, Tokyo, Japan

Publication date: 2011-03-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more