Skip to main content

Forecast of NDVI in coniferous areas using temporal ARIMA analysis and climatic data at a regional scale

Buy Article:

$59.35 plus tax (Refund Policy)


Important issues such as the prediction of drought, fire risk and forest disease are based on analysis of forest vegetation response. A method of forecasting the short-term response of forest vegetation on the basis of an autoregressive integrated moving average (ARIMA) analysis was designed in this study. We used 10-day maximum value composite (MVC) bands of the Normalized Difference Vegetation Index (NDVI) obtained from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data from 1993 to 1997. Using the theory of stochastic processes (Box-Jenkins), the MVC-NDVI series was analysed and a seasonal ARIMA (SARIMA) model was developed for forecasting NDVI in the following 10-day periods. The SARIMA model identified a moving-average regular term with a 10-day lag and an autoregressive 37 10-day period seasonal term with a one-season (1-year) component. The study also demonstrated a slight relationship between the NDVI and the precipitation level in some species of conifers by using climatic time series and the analysis of dynamic models and allowed us to elaborate an image of the immediate future NDVI for the study area (Castile and Leon, Spain).

Document Type: Research Article


Affiliations: 1: Agrarian Engineering Department, University of Leon, Av. Astorga s/n, Ponferrada, Spain 2: Electronic Technology Department, University of Valladolid, C/Francisco Mendizabal 1, Valladolid, Spain

Publication date: March 1, 2011

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics