If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

A new area-specific bio-optical algorithm for the Bay of Biscay and assessment of its potential for SeaWiFS and MODIS/Aqua data merging

$61.74 plus tax (Refund Policy)

Buy Article:

Abstract:

Based on a feed-forward and error-back-propagated neural network (NN), a new bio-optical algorithm is developed for the Bay of Biscay. It is designed as a set of NNs individually dedicated to the retrieval of the phytoplankton chlorophyll (chl), and total suspended matter (tsm) from Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua data. The retrieved versus in situ measured concentrations of chl and tsm correlation coefficients for chl proved to be ∼0.8 (SeaWiFS) and 0.72 (MODIS), and for tsm 0.71 (SeaWiFS) and 0.74 (MODIS). The developed NN-based bio-optical algorithms are employed to assess the compatibility of SeaWiFS and MODIS data on chl and tsm in the coastal zone of the Bay of Biscay (case 2 waters). The value of the ratio between the concentration of chl and tsm derived from the same-day SeaWiFS and MODIS data (the overflight time difference, Δt is ≤2.5 hours) has in most cases values of approximately 1, however, in specific cases it varies appreciably. These results indicate that, unlike the reportedly very successful cases of merging of SeaWiFS and MODIS data on chl in open ocean waters (case 1 waters), the merging of chl (and tsm) data from these sensors collected over case 2 waters needs to be supervised at a level of a few pixels. At the same time, when averaged over the entire coastal zone of the Bay of Biscay, the retrieved monthly mean chl and tsm concentrations from SeaWiFS and MODIS practically coincide throughout the years (2002-2004) of contemporaneous operation of these two satellite sensors. Thus, even in the case of such dynamic and optically complex case 2 waters that are inherent in the Bay of Biscay, the potentials for ocean colour data merging are very good. The merging efficiency is assessed and illustrated via documenting the spatio-temporal dynamics of bottom sediment re-suspension in the bay occurring in winter - the season of heaviest cloudiness over the bay.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431161.2010.508802

Affiliations: 1: Nansen International Environmental and Remote Sensing Center, St. Petersburg, Russia,Russian State Hydrometeorological University, Malookhtinsky Prospect, 98, St. Petersburg, Russia 2: Nansen International Environmental and Remote Sensing Center, St. Petersburg, Russia,Nansen Environmental and Remote Sensing Center, Thormølhensgate 47, Bergen, Norway 3: Nansen Environmental and Remote Sensing Center, Thormølhensgate 47, Bergen, Norway 4: Russian State Hydrometeorological University, Malookhtinsky Prospect, 98, St. Petersburg, Russia

Publication date: July 1, 2010

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more