Skip to main content

Comparing direct image and wavelet transform-based approaches to analysing remote sensing imagery for predicting wildlife distribution

Buy Article:

$60.90 plus tax (Refund Policy)

Abstract:

In this study we tested the ability to predict the probability of elephant (Loxodonta africana) presence in an agricultural landscape of Zimbabwe based on three methods of measuring the spatial heterogeneity in vegetation cover, where vegetation cover was measured using the Landsat Thematic Mapper (TM)-derived normalized difference vegetation index (NDVI). The three methods of measuring spatial heterogeneity were: one wavelet-derived spatial heterogeneity measure; and two direct image measures. The wavelet-derived spatial heterogeneity measure consists of the intensity, which measures the maximum contrast in the vegetation cover, and the dominant scale, which determines the scale at which this intensity occurs. The two direct image measures use the NDVI average and the NDVI coefficient of variation (NDVIcv). The results show that the wavelet-derived spatial heterogeneity significantly explains 80% of the variance in elephant presence compared with 60% and 48% variance explained by the NDVI average and NDVIcv, respectively. We conclude that the wavelet transform-based approach predicts elephant distribution better than the direct image measures of spatial heterogeneity.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160903418241

Affiliations: 1: Department of Geography and Environmental Science, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe 2: International Institute for Geo-Information Science and Earth Observation (ITC), The Netherlands

Publication date: July 1, 2010

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more