
A two-stage method for oil slick segmentation
In this paper we propose a two-stage algorithm for oil slick segmentation in synthetic aperture radar (SAR) images. In the first stage, we propose a new variational model to reduce speckles in non-textured SAR images. Applications to simulated and real SAR images show that the method is well balanced in the quality of the conventional criteria. Then, in the second stage, we use the fast Chan-Vese (CV) model and the level set method to segment the oil slick in the de-speckled SAR image. The additive operator splitting (AOS) scheme is used in the numerical implementation to improve computational efficiency. Experimental results show that our two-stage algorithm is effective for oil slick segmentation in SAR images.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics
Document Type: Research Article
Affiliations: 1: Department of Mathematics, East China Normal University, Shanghai, China 2: Department of Computer Science, East China Normal University, Shanghai, China
Publication date: 2010-05-01
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Ingenta Connect is not responsible for the content or availability of external websites