An algorithm to estimate soil moisture over vegetated areas based on in situ and remote sensing information

$60.01 plus tax (Refund Policy)

Buy Article:

Abstract:

An algorithm is proposed for estimating soil moisture over vegetated areas. The algorithm uses in situ and remote sensing information and statistical tools to estimate soil moisture at 1 km spatial resolution and at 20 cm depth over Puerto Rico. Soil moisture within the study region is characterized by spatial and temporal variability. The temporal variability for a given area exhibits long- and short-term variations that can be expressed by two empirical models. The average monthly soil moisture exhibits the long-term variability and is modelled by an artificial neural network (ANN), whereas the short-term variability is determined by hourly variation and is represented by a nonlinear stochastic transfer function model. Monthly vegetation index, land surface temperature, accumulated rainfall and soil texture are the major drivers of the ANN to estimate the monthly soil moisture. Radar, satellite and in situ observations are the major sources of information of the soil moisture empirical models. A self-organized ANN was also used to identify spatial variability to be able to determine a similar transfer function that best resembles the properties of a particular grid point and estimate the hourly soil moisture across the island. Validation techniques reveal an average absolute error of 3.34% of volumetric water content and this result shows that the proposed algorithm is a potential tool for estimating soil moisture over vegetated areas.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160903085628

Affiliations: 1: Department of Industrial Engeering, University of Puerto Rico, Mayaguez, PR 2: Department of Mechanical Engineering, University of Puerto Rico, Mayaguez, PR 3: Department of Agricultural Engineering, University of Puerto Rico, Mayaguez, PR 4: Department of Electrical and Computer Engineering, University of Puerto Rico, Mayaguez, PR 5: Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA, USA

Publication date: March 1, 2010

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more