Uncertainty within satellite LiDAR estimations of vegetation and topography

$61.74 plus tax (Refund Policy)

Buy Article:

Abstract:

This paper demonstrates the ability to identify representative ground elevation and vegetation height estimates within the Ice, Cloud and land Elevation Satellite/Geoscience Laser Altimeter System (ICESat/GLAS) waveforms for an area of mixed vegetation and varied topography. Estimating vegetation height within large-footprint Light Detection and Ranging (LiDAR) waveforms relies on the ability to estimate the uppermost canopy surface (signal beginning) and an elevation representing the ground surface, both of which are influenced by vegetation properties and topographic slope. We examined sources of uncertainty for vegetation height estimation from ICESat/GLAS data using airborne LiDAR data, field measurements and the FLIGHT radiative transfer model. In comparison with an independent 10-m resolution digital terrain model (DTM), a method using Gaussian decomposition of the satellite waveform produced a mean bias of -0.10 m when estimating ground elevation. A second method of estimating vegetation height using waveform extent and a terrain index effectively removed slope as an error source but produced a greater ground surface offset (-0.83 m). The two methods of estimating vegetation height compared well with airborne LiDAR estimates (correlation coefficient (R2) = 0.68, root mean square error (RMSE) = 4.4 m and R2 = 0.61, RMSE = 4.9 m, respectively). However, the complex interplay of the structural and optical properties of the intercepted vegetation and slope requires further understanding. A tool such as FLIGHT provides a useful means to explore the sensitivity of the waveform to both vegetation properties and topographic slope.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160903380631

Affiliations: 1: Climate and Land-Surface Systems Interaction Centre, Geography Department, Swansea University, Swansea, UK,Forest Research Agency of the Forestry Commission, Northern Research Station, Roslin, Midlothian, UK 2: Climate and Land-Surface Systems Interaction Centre, Geography Department, Swansea University, Swansea, UK 3: Forest Research Agency of the Forestry Commission, Northern Research Station, Roslin, Midlothian, UK

Publication date: February 1, 2010

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more