Skip to main content

Mapping gap fraction, LAI and defoliation using various ALS penetration variables

Buy Article:

$63.00 plus tax (Refund Policy)

Four alternative airborne laser scanning (ALS) canopy penetration variables were compared for their suitability for mapping of gap fraction, leaf area index and disturbances in a Scots pine forest. The variables were based on either echo counting or intensity, and on either first or first and last echoes. ALS data and field-measured gap fraction and effective leaf area index (LAIe) were gathered before and after a severe insect defoliation by pine sawflies. LAIe is a commonly used form of leaf area index that is mathematically derived from gap fraction, and includes the areas of foliage, branches and trunks, and which is not corrected for the clumping of foliage. The ALS penetration variables were almost equally strongly related to field-measured gap fraction and LAIe. The estimated slopes in the LAIe models varied from 0.94 to 2.71, and had coefficient of determination R2 values of 0.92-0.94. They were strongly correlated to each other (R2 values of 0.95-0.98) and agreed fairly well for temporal changes of LAIe during the summer and the insect defoliation (R2 values of 0.82-0.95). Counting of first and last echoes produced penetration rates close to the gap fraction, and this penetration variable was able to penetrate tree crowns. Ground-only echoes represented mostly between-tree gaps, and canopy-first-ground-last pulses represented mostly within-canopy gaps. However, the penetration variables based on first and last echoes suffered from the problem that a second echo might be impaired both in low and in tall canopies. In low canopies, two adjacent echoes from the same pulse would be too close in time to be separated by the sensor, while in tall canopies the pulse might apparently be fragmented down through the canopy. The intensity-based penetration variables needed to be supplemented with reflectance values, or at least the ratio between reflectance of the canopy and the ground, and this ratio was estimated from the data. The study demonstrated that one might be able to distinguish between disturbance types, e.g. between defoliation and cutting, by comparing alternative ALS penetration variables. Insect defoliation was dominated by an increase in within-canopy gaps and, correspondingly, the fraction of partly penetrating canopy-first-ground-last pulses. Tree removals from cutting were dominated by increases in between-tree gaps and the corresponding fraction of ground-only pulses.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Norwegian Forest and Landscape Institute, ├ůs, Norway

Publication date: 2010-02-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more