Skip to main content

Estimation of tree lists from airborne laser scanning by combining single-tree and area-based methods

Buy Article:

$55.00 plus tax (Refund Policy)

Individual tree crown segmentation from airborne laser scanning (ALS) data often fails to detect all trees depending on the forest structure. This paper presents a new method to produce tree lists consistent with unbiased estimates at area level. First, a tree list with height and diameter at breast height (DBH) was estimated from individual tree crown segmentation. Second, estimates at plot level were used to create a target distribution by using a k-nearest neighbour (k-NN) approach. The number of trees per field plot was rescaled with the estimated stem volume for the field plot. Finally, the initial tree list was calibrated using the estimated target distribution. The calibration improved the estimates of the distributions of tree height (error index (EI) from 109 to 96) and DBH (EI from 99 to 93) in the tree list. Thus, the new method could be used to estimate tree lists that are consistent with unbiased estimates from regression models at field plot level.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden

Publication date: 2010-02-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more