Skip to main content

Joint detection of roads in multifrequency SAR images based on a particle filter

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

A new method is proposed for joint detection of roads in multifrequency synthetic aperture radar (SAR) images. First, a multisegmented polyline model was introduced to provide a more accurate description of a road curve. Then, the roads in the SAR images were extracted in a Bayesian tracking framework, and a particle filtering algorithm used to implement the tracking. Finally, a joint detection method based on the maximum likelihood (ML) criterion was proposed to determine the optimal weights of the particles. Using multifrequency SAR data from the National Aeronautics and Space Administration Jet Propulsion Laboratory (NASA/JPL) Airborne Synthetic Aperture Radar (AIRSAR), the effectiveness of the proposed method is demonstrated by experimental extraction results for a single road as well as for a road network, and it is validated that the joint detection method leads to a larger detection probability than the single detection method.

Document Type: Research Article

DOI: https://doi.org/10.1080/01431160903252319

Affiliations: Department of Electronic Engineering, Tsinghua University, Beijing, China

Publication date: 2010-04-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more