Skip to main content

Repeat-pass multi-temporal interferometric SAR coherence variations with Amazon floodplain and lake habitats

Buy Article:

$55.00 plus tax (Refund Policy)

We have analysed interferometric coherence variations in Japanese Earth Resources Satellite (JERS-1) L-band synthetic aperture radar (SAR) data at three central Amazon sites: Lake Balbina, Cabaliana and Solimoes-Purus. Because radar pulse interactions with inundated vegetation typically follow a double-bounce travel path that returns energy to the antenna, coherence will vary with vegetation type as well as with physical and temporal baselines. Lake Balbina consists mostly of upland forests and inundated trunks of dead, leafless trees whereas Cabaliana and Solimoes-Purus are dominated by flooded forests. Balbina has higher coherence values than either Cabaliana or Solimoes-Purus probably because the dead, leafless trees support strong double-bounce returns. The mean coherences of flooded woodland are 0.28 in Balbina and 0.11 in both Cabaliana and Solimoes-Purus. With increasing temporal baselines, flooded and nonflooded wetland habitats show a steadily decreasing trend in coherence values whereas terra-firme and especially open-water habitats have little variation and remain lower in value. Flooded and nonflooded wetland coherence varies with the season whereas terra-firme and open water do not have similarly evident seasonal variations. For example, flooded habitats in all three study regions show annual peaks in coherence values that are typically 0.02 greater than coherence values from temporal baselines 180 days later, yet open water shows no variation with time. Our findings suggest that, despite overall low coherence values, repeat-pass interferometric coherence of flooded habitats is capable of showing the annual periodicity of the Amazon flood wave.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: School of Earth Sciences, The Ohio State University, Columbus, OH, USA

Publication date: 2010-04-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more