Skip to main content

Correction of reflectance anisotropy: a multi-sensor approach

Buy Article:

$71.00 + tax (Refund Policy)

Quantitative mapping by means of hyperspectral remote sensing (HRS) can be hampered by reflectance anisotropy emerging in large field of view (FOV) optics, and may contain spectral radiometric distortions. This paper presents an algorithm for the rectification of reflectance anisotropy for rough terrain. A new method is offered for correction of radiometric bias caused by topography and sensing geometry. The correction of HRS data of lawn grass is demonstrated, and the method is tested on a large park area. To record elevation we used airborne laser scanning data to obtain a digital surface model (DSM). The Compact Airborne Spectral Imager (CASI) recorded reflectance of the same area. Anisotropy of reflectance was recorded by a laboratory spectro-goniometer. An analysis of the effect of correction on the normalized difference vegetation index (NDVI) shows that even moderate slopes, medium sensor FOV and high illumination conditions will result in reflectance anisotropy. Further analysis shows a clear inverse relationship between sensitivity of interpretation and spatial or spectral resolutions. We conclude with an outlook on the utilization of this method among other pre-processing tasks.

Document Type: Research Article

Affiliations: 1: Department of Geography and the Human Environment, University of Tel-Aviv, Israel 2: Department of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel

Publication date: 01 March 2010

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content