Skip to main content

Towards an intelligent multi-sensor satellite image analysis based on blind source separation using multi-source image fusion

Buy Article:

$59.35 plus tax (Refund Policy)


In this paper we propose a new approach for land cover classification using blind sources separation (BSS) and satellite image fusion methods simultaneously. Satellite image pixels are represented by radiometric values where each pixel is considered as a mixture of several independent sources. The BSS methods were developed in order to extract maximum information from different statistical features such as spatial correlation and local high order statistics. The statistical independence of the sources can be obtained through the joint approximate diagonalization of eigen-matrix in two dimensions (JADE-2D) algorithm. A reduction of spatial correlation can be obtained using the second order blind identification in two dimensions (SOBI-2D) algorithm. Non-Gaussianity can be measured using the fast-independent component analysis in two dimensions (Fast-ICA-2D) algorithm. These algorithms allow extraction of features by estimating the source images, mixing and un-mixing the matrix. These source images will be used by our framework as secondary knowledge, which is useful for a supervised classification.

Document Type: Research Article


Affiliations: Laboratory RIADI, School of Engineering and Computer Science, 2010 Manouba University, Tunis, Tunisia

Publication date: March 1, 2010

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more