Simulation of high-resolution mid-infrared (3-5 μm) images using an atmosphere radiative transfer analytic model

$60.01 plus tax (Refund Policy)

Buy Article:

Abstract:

Future mid-infrared satellite missions exploring the Earth will feature advanced high spatial resolution and directional imaging instruments. Consistent end-to-end simulation of them is an important task, and is sometimes the only way to adapt and optimize a sensor and its observation conditions, to choose and test algorithms for data processing, to estimate errors and to evaluate the capabilities of the whole sensor system. However, contrary to other wavelength ranges, the mid-infrared is highly dependent on atmospheric scattering and emission. Therefore, simulation of atmospheric radiative transfer for remote sensing images will remain a challenging task, because few studies on this topic include a full treatment of atmospheric effects. With a given resolution and directional capabilities of the instrument, and combining with land surface temperature and emissivity data obtained from airborne imagery, TOA (top of atmosphere) radiance images have been simulated pixel by pixel, coupling the atmospheric radiative transfer analytic model extended from MODTRAN4 and the atmospheric adjacency effect model derived from point spread function (for atmospheric directional and adjacency effect). In this way, all major scattering and emission contributions of atmosphere were considered. Based on different atmospheric conditions and geometrical relations between the scene, the Sun and the sensor, simulated TOA radiance images were produced according to simulated workflows, 10-m spatial resolution and a spectral range of 3.5-3.9 μm. Analysis of results indicates that the analytic model and adjacency effect model are more suitable for mid-infrared imaging simulation than other existing models. This paper describes the principle of the two models, the applied methodology, the set-up of the actual image simulations, and then discusses the final results obtained.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160902798403

Affiliations: 1: National Engineering Research Center for Information Technology in Agriculture, Beijing, PO Box 2449-26, Beijing, PR China,State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing, PR China 2: State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing, PR China 3: National Engineering Research Center for Information Technology in Agriculture, Beijing, PO Box 2449-26, Beijing, PR China

Publication date: January 1, 2009

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more