Skip to main content

Quantifying high-resolution impervious surfaces using spectral mixture analysis

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Impervious surface distribution and its temporal changes are considered key urbanization indicators and are utilized for analysing urban growth and influences of urbanization on natural environments. Recently, urban impervious surface information was extracted from medium/coarse resolution remote sensing imagery (e.g. Landsat ETM+ and AVHRR) through spectral analytical methods (e.g. spectral mixture analysis (SMA), regression tree, etc.). Few studies, however, have attempted to generate impervious surface information from high resolution remotely sensed imagery (e.g. IKONOS and Quickbird). High resolution images provide detailed information about urban features and are, therefore, more valuable for urban analysis. The improved spatial resolution, however, also brings new challenges when existing spectral analytical methods are applied. In particular, a higher spatial resolution leads to reduced boundary effects and increased within-class variability. Taking Grafton, Wisconsin, USA as a study site, this paper analyses the spectral characteristics of IKONOS imagery and explores the applicability of SMA for impervious surface estimation. Results suggest that with improved spatial resolution, IKONOS imagery contains 40-50% of mixed urban pixels for the study area, and the within-class variability is a severe problem for spectral analysis. To address this problem, this paper proposes two approaches, interior end-member set selection and spectral normalization, for SMA. Analysis of results indicates that these approaches can reasonably reduce the problems associated with boundary effects and within-class variability, therefore generating better impervious surface estimates.

Document Type: Research Article

DOI: https://doi.org/10.1080/01431160802558634

Affiliations: Department of Geography, University of Wisconsin-Milwaukee, Milwaukee, WI 53201-0413

Publication date: 2009-01-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more