Skip to main content

Comparative analysis of SRTM-NED vegetation canopy height to LIDAR-derived vegetation canopy metrics

Buy Article:

$63.00 plus tax (Refund Policy)

Vegetation canopy heights derived from the SRTM 30 m grid DEM minus USGS National Elevation Data (NED) DTM were compared to three vegetation metrics derived from a medium footprint LIDAR data (LVIS) for the US Sierra Nevada forest in California. Generally the SRTM minus NED was found to underestimate the vegetation canopy height. Comparing the SRTM-NED-derived heights as a function of the canopy percentile height (shape/vertical structure) derived from LVIS, the SRTM SAR signal was found to penetrate, on average, into about 44% of the canopy and 85% after adjustment of the data. On the canopy type analysis, it was found that the SRTM phase scattering centres occurred at 60% for red fir, 53% for Sierra mixed conifer, 50% for ponderosa pine and 50% for montane hardwood-conifer. Whereas analysing the residual errors of the SRTM-NED minus the LVIS-derived canopy height as a function of LVIS canopy height and cover it was observed that the residuals generally increase with increasing canopy height and cover. Likewise, the behaviour of the RMSE as a function of canopy height and cover was observed to initially increase with canopy height and cover but saturates at 50 m canopy height and 60% canopy cover. On the other hand, the behaviour of the correlation coefficient as a function of canopy height and cover was found to be high at lower canopy height (<15 m) and cover (<20%) and decrease rapidly making a depression at medium canopy heights (>15 m and <50 m) and cover (>20% and <50%). It then increases with increasing canopy height and cover yielding a plateau at canopies higher than 50 m and cover above 70%.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: 1: Institute for Digital Image Processing, Joanneum Research, Wastiangasse 6, Graz A-8010, Austria 2: Department of Geography, University of Maryland, College Park, MD, USA

Publication date: 2009-01-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more