Skip to main content

Broadleaf species recognition with in situ hyperspectral data

Buy Article:

$55.00 plus tax (Refund Policy)

Timely and accurate identification of tree species by spectral methods is crucial for forest and urban ecological management. In this study, a total of 394 reflectance spectra (between 350 and 2500 nm) from foliage branches or canopy of 11 important urban forest broadleaf species were measured in the City of Tampa, Florida, USA with a spectrometer. The 11 species include American elm (Ulmus americana), bluejack oak (Quercus incana), crape myrtle (Lagerstroemia indica), laurel oak (Q. laurifolia), live oak (Q. virginiana), southern magnolia (Magnolia grandiflora), persimmon (Diospyros virginiana), red maple (Acer rubrum), sand live oak (Q. geminata), American sycamore (Platanus occidentalis), and turkey oak (Q. laevis). A total of 46 spectral variables, including normalized spectra, derivative spectra, spectral vegetation indices, spectral position variables, and spectral absorption features were extracted and analysed from the in situ hyperspectral measurements. Two classification algorithms were used to identify the 11 broadleaf species: a nonlinear artificial neural network (ANN) and a linear discriminant analysis (LDA). An analysis of variance (ANOVA) indicates that the 30 selected spectral variables are effective to differentiate the 11 species. The 30 selected spectral variables account for water absorption features at 970, 1200, and 1750 nm and reflect characteristics of pigments and other biochemicals in tree leaves, especially variability of chlorophyll content in leaves. The experimental results indicate that both classification algorithms (ANN and LDA) have produced acceptable accuracies (overall accuracy from 86.3% to 87.8%, kappa from 0.83 to 0.87) and have a similar performance for classifying the 11 broadleaf species with input of the 30 selected spectral variables. The preliminary results of identifying the 11 species with the in situ hyperspectral data imply that with current remote sensing techniques, including high spatial and spectral resolution data, it is still difficult but possible to identify similar species to such 11 broadleaf species with an acceptable accuracy.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Department of Geography, University of South Florida, Tampa, FL 33620 USA

Publication date: 2009-01-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more