Skip to main content

Land-use classification of multispectral aerial images using artificial neural networks

Buy Article:

$60.90 plus tax (Refund Policy)

Abstract:

During the past decade, there have been significant improvements in remote sensing technologies, which have provided high-resolution data at shorter time intervals. Considerable effort has been directed towards developing new classification strategies for analysing this imagery, but the use of artificial intelligence-based analysis techniques has been somewhat limited. The aim of this study was to develop an artificial neural network (ANN)-based technique for the classification of multispectral aerial images for land use in agricultural and environmental applications. The specific land-use classes included water, forest, and several types of agricultural fields. Multispectral images at a 1-m resolution were obtained for the state of Georgia, USA from a Geographic Information Systems (GIS) data clearinghouse. These false-colour images contained green, red and infrared true-colour information. Three approaches were used for the preparation of the inputs to the ANN. These included histograms of the pixel intensities, textural parameters extracted from the image, and matrices of the pixels for spatial information. A probabilistic neural network was used. Seven hundred images were used for model development and 175 for independent model evaluation. The overall accuracy for the evaluation data set was 74% for the histogram approach, 71% for the spatial approach and 89% for the textural approach. The evaluation of ANNs based on various combinations of all three approaches did not show an improvement in accuracy. We also found that some approaches could be used selectively for certain classes. For example, the textural approach worked best for forest classes. For future studies, edge detection prior to classification, with more careful selection of each class, should be included for land-use classification of multispectral images.

Document Type: Research Article

DOI: https://doi.org/10.1080/01431160802549187

Affiliations: 1: Artificial Intelligence Center, the University of Georgia, Athens, GA 30602, USA 2: Artificial Intelligence Center, the University of Georgia, Athens, GA 30602, USA,Department of Biological and Agricultural Engineering, the University of Georgia, Athens, GA 30602, USA 3: Department of Biological and Agricultural Engineering, the University of Georgia, Griffin, GA 30223, USA

Publication date: 2009-04-01

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more