Skip to main content

Fuzzy segmentation for object-based image classification

Buy Article:

$60.90 plus tax (Refund Policy)


This Letter proposes an object-based image classification procedure which is based on fuzzy image-regions instead of crisp image-objects. The approach has three stages: (a) fuzzification in which fuzzy image-regions are developed, resulting in a set of images whose digital values express the degree of membership of each pixel to target land-cover classes; (b) feature analysis in which contextual properties of fuzzy image-regions are quantified; and (c) defuzzification in which fuzzy image-regions are allocated to target land-cover classes. The proposed procedure is implemented using automated statistical techniques that require very little user interaction. The results indicate that fuzzy segmentation-based methods produce acceptable thematic accuracy and could represent a viable alternative to current crisp image segmentation approaches.

Document Type: Research Article


Affiliations: 1: Cadastral Engineering and Geodesy Department, Universidad Distrital Francisco Jose de Caldas, Bogota, Colombia 2: Birkbeck College, University of London, London, United Kingdom

Publication date: 2009-01-01

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more