Skip to main content

Neural networks as a tool for constructing continuous NDVI time series from AVHRR and MODIS

Buy Article:

$60.90 plus tax (Refund Policy)


The long term Advanced Very High Resolution Radiometer (AVHRR)-Normalized Difference Vegetation Index (NDVI) record provides a critical historical perspective on vegetation dynamics necessary for global change research. Despite the proliferation of new sources of global, moderate resolution vegetation datasets, the remote sensing community is still struggling to create datasets derived from multiple sensors that allow the simultaneous use of spectral vegetation for time series analysis. To overcome the non-stationary aspect of NDVI, we use an artificial neural network (ANN) to map the NDVI indices from AVHRR to those from MODIS using atmospheric, surface type and sensor-specific inputs to account for the differences between the sensors. The NDVI dynamics and range of MODIS NDVI data at 1° is matched and extended through the AVHRR record. Four years of overlap between the two sensors is used to train a neural network to remove atmospheric and sensor specific effects on the AVHRR NDVI. In this paper, we present the resulting continuous dataset, its relationship to MODIS data, and a validation of the product.

Document Type: Research Article


Affiliations: 1: Science Systems and Applications, Inc., NASA Goddard Space Flight Center, MD, 20771, USA 2: UMBC GEST, NASA Goddard Space Flight C, MD, 20771, USA 3: Joint Research Centre of the European Commission, Ispra (VA), 21027, Italy 4: Department of Chemistry, University of Cambridge, CBR 3QZ, UK

Publication date: December 1, 2008

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more