Skip to main content

Remote sensing study of sector collapses and debris avalanche deposits at Oldoinyo Lengai and Kerimasi volcanoes, Tanzania

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Evidence for volcano collapse and debris avalanche deposits (DADs) at Oldoinyo Lengai (OL), Tanzania, has been obtained from mapping and fieldwork. Three major DADs have been identified, named Zebra, Cheetah and Oryx DADs. Field evidence indicates geologically young ages. On this basis a remote sensing (RS) study of the active carbonatite volcano OL and the surrounding rift plain was carried out, using Shuttle Radar Topography Mission (SRTM) digital elevation data, Landsat and ASTER imagery, geological maps and aerial photographs. The SRTM digital elevation model (DEM) allowed morphological characterization of OL and reassessment of the volcano volume to 41±5 km3. This enabled the identification of collapse scars, fields of large hummocks (>300 m across), sharp deposit edges typical of DADs, and estimation of the minimum thickness of the DADs. Multispectral and topographic RS data interpretation allowed mapping of the extent and estimation of the volume of two sector-collapse scars and three DADs. The DADs extend up to 24 km from OL and have volumes ranging from 0.1 to ∼5 km3. Striking radial ridges and grooves were identified in some parts of the DADs. The morphological variability for ridges and grooves in different DADs is attributed to contrasting flow dynamics and avalanching material. A volcano collapse and the corresponding DAD, ∼1 km3 in volume, were also characterized by RS at the nearby Kerimasi volcano. The presence of young DADs highlights the need for routine monitoring of ground deformation and seismicity at OL to anticipate hazardous events.

Document Type: Research Article

DOI: https://doi.org/10.1080/01431160802168137

Affiliations: 1: Mercator and Ortelius Research Centre for Eruption Dynamics, Department of Geology and Soil Sciences, Ghent University, B-9000 Ghent, Belgium 2: Mineralogical-Geochemical Institute, Albert Ludwigs-University of Freiburg, Germany 3: Department of Geology, University of Dar es Salaam, Tanzania

Publication date: 2008-11-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more