Skip to main content

Near-surface air temperature estimation from ASTER data based on neural network algorithm

Buy Article:

$55.00 plus tax (Refund Policy)

An algorithm based on the radiance transfer model (MODTRAN4) and a dynamic learning neural network for estimation of near-surface air temperature from ASTER data are developed in this paper. MODTRAN4 is used to simulate radiance transfer from the ground with different combinations of land surface temperature, near surface air temperature, emissivity and water vapour content. The dynamic learning neural network is used to estimate near surface air temperature. The analysis indicates that near surface air temperature cannot be directly and accurately estimated from thermal remote sensing data. If the land surface temperature and emissivity were made as prior knowledge, the mean and the standard deviation of estimation error are both about 1.0 K. The mean and the standard deviation of estimation error are about 2.0 K and 2.3 K, considering the estimation error of land surface temperature and emissivity. Finally, the comparison of estimation results with ground measurement data at meteorological stations indicates that the RM-NN can be used to estimate near surface air temperature from ASTER data.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Graduate School of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo 060-8589, Japan

Publication date: 2008-10-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more