Skip to main content

Digital terrain analysis using Landsat-7 ETM+ imagery and SRTM DEM: a case study of Nevsehir province (Cappadocia), Turkey

Buy Article:

$59.35 plus tax (Refund Policy)


A three-dimensional (3D) model of land-use/land-cover (LULC) and a digital terrain model of Nevsehir province (Cappadocia), Turkey, were generated and analysed using a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) multispectral image set and a Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM). Stream drainage patterns, lineaments and structural-geological features (landforms) were extracted and analysed. In the process of analysing and interpreting the multispectral images of geological features, criteria such as colour and colour tones, topography and stream drainage patterns were used to acquire information about the geological structures of the land, including as geomorphological, topographic and tectonic structures. Landsat-7 ETM+ multispectral imagery and an SRTM DEM of the study region were used experimentally for classification and analysis of a digital terrain model. Using the multispectral image data, the LULC types were classified as: settlement (1.2%); agricultural land (70.1%); forest (scrubland, orchard and grassland) (2.9%); bare ground (25.5%); and water bodies (lakes and rivers) (0.3%) of the study area (5434 km2). The results of the DEM classification in the study area were: river flood plain (11.3%); plateau (52.3%); high plateau (28.4%); mountain (7.6%); and high mountain (0.3%). Lineament analysis revealed that the central Kizilirmak River divides the region into two nearly equal parts: the Kirsehir Plateau in the north and the Nevsehir Plateau in the south. In terms of the danger of catastrophe, the settlements of Kozakli, Hacibektas and Acigol were found to be at less risk of earthquake and/or flooding than those of Avanos, Gulsehir, Urgup, Nevsehir, Gumuskent and Derinkuyu, which are located on river flood plains and/or the main stream drainage channels, particularly stream beds, where the lineaments are deep valleys or fracture or fault-line indicators.

Document Type: Research Article


Affiliations: Department of Geodesy and Photogrammetry Engineering, Nigde University, Nigde, Turkey

Publication date: January 1, 2008

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics