Skip to main content

A multiresolution spectral angle-based hyperspectral classification method

Buy Article:

$63.00 plus tax (Refund Policy)


Due to the lack of training samples, hyperspectral classification often adopts the minimum distance classification method based on spectral metrics. This paper proposes a novel multiresolution spectral-angle-based hyperspectral classification method, where band subsets will be selected to simultaneously minimize the average within-class spectral angle and maximize the average between-class spectral angle. The method adopts a pairwise classification framework (PCF), which decomposes the multiclass problem into two-class problems. Based on class separability criteria, the original set of bands is recursively decomposed into band subsets for each two-class problem. Each subset is composed of adjacent bands. Then, the subsets with high separability are selected to generate subangles, which will be combined to measure the similarity. Following the PCF, the outputs of all the two-class classifiers are combined to obtain the final output. Tested with an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data set for a six-class problem, the results demonstrate that our method outperforms the previous spectral metric-based classification methods.

Document Type: Research Article


Affiliations: ATR National Key Laboratory, National University of Defense Technology, Changsha, Hunan, China, 410073

Publication date: 2008-06-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more