Skip to main content

Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM+ and Radarsat data

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Land-cover classification with remotely sensed data in moist tropical regions is a challenge due to the complex biophysical conditions. This paper explores techniques to improve land-cover classification accuracy through a comparative analysis of different combinations of spectral signatures and textures from Landsat Enhanced Thematic Mapper Plus (ETM+) and Radarsat data. A wavelet-merging technique was used to integrate Landsat ETM+ multispectral and panchromatic data or Radarsat data. Grey-level co-occurrence matrix (GLCM) textures based on Landsat ETM+ panchromatic or Radarsat data and different sizes of moving windows were examined. A maximum-likelihood classifier was used to implement image classification for different combinations. This research indicates the important role of textures in improving land-cover classification accuracies in Amazonian environments. The incorporation of data fusion and textures increases classification accuracy by approximately 5.8-6.9% compared to Landsat ETM+ data, but data fusion of Landsat ETM+ multispectral and panchromatic data or Radarsat data cannot effectively improve land-cover classification accuracies.

Document Type: Research Article

DOI: https://doi.org/10.1080/01431160701227596

Affiliations: Brazilian Agricultural Research Corporation, Embrapa Satellite Monitoring, Campinas, São Paulo, 13088, Brazil

Publication date: 2007-01-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more