Skip to main content

Mean Compositing, an alternative strategy for producing temporal syntheses. Concepts and performance assessment for SPOT VEGETATION time series

Buy Article:

$60.90 plus tax (Refund Policy)


Various compositing criteria have been proposed to produce cloud-free images from optical time series. However, they often favour specific atmospheric and geometric conditions, which may cause serious inconsistencies in the syntheses. Algorithms including BRDF normalization minimize variations induced by the anisotropy of the target. However, their operational implementation faces some issues. This study proposes to avoid these issues by using a new strategy based on a statistical approach, i.e. Mean Compositing, and by comparing it with three existing techniques. A quantitative evaluation methodology with statistical tests on reflectance and texture values as well as visual comparisons were applied to numerous SPOT VEGETATION time series. The performance criterion was to best mimic the information content of a single cloud-free near-nadir view image. Moreover a quantitative approach was used to assess the temporal consistency of the syntheses. The results showed that the proposed strategy combined with an efficient quality control produces images with greater spatial consistency than currently available VEGETATION products but produces slightly more uneven time series than the most advanced compositing algorithm.

Document Type: Research Article


Affiliations: Department of Environmental Sciences and Land Use Planning, Université Catholique de Louvain, Croix du Sud, 2/16, B-1348 Louvain-la-Neuve, Belgium

Publication date: January 1, 2007

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more