Skip to main content

Multispectral image classification: a supervised neural computation approach based on rough-fuzzy membership function and weak fuzzy similarity relation

Buy Article:

$63.00 plus tax (Refund Policy)

A supervised neural network classification model based on rough-fuzzy membership function, weak fuzzy similarity relation, multilayer perceptron, and back-propagation algorithm is proposed. The described model is capable of dealing with rough uncertainty as well as fuzzy uncertainty associated with the classification of multispectral images. The concept of weak fuzzy similarity relation is used for generation of fuzzy equivalence classes during the calculation of rough-fuzzy membership function. The model allows efficient modelling of indiscernibility and fuzziness between patterns by appropriate weights being assigned using the back-propagated errors depending upon the rough-fuzzy membership values at the corresponding outputs. The effectiveness of the proposed model is demonstrated on classification problem of IRS-P6 LISS IV image of Allahabad area. The results are compared with statistical (minimum distance to means), conventional Multi-Layer Perceptron (MLP) and Fuzzy Multi-Layer Perceptron (FMLP) models. The better overall accuracy, user's and producer's accuracies and kappa coefficient of the proposed classifier in comparison to other considered models demonstrate the effectiveness of this model in multispectral image classification.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Indian Institute of Information Technology (IIIT), Allahabad - 211011, India

Publication date: 2007-01-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more