Nonlinear estimation of subpixel proportion via kernel least square regression

$63.37 plus tax (Refund Policy)

Buy Article:

Abstract:

Spectral mixture analysis is an efficient approach to spectral decomposition of hyperspectral remotely sensed imagery, using land cover proportions which can be estimated from pixel values through model inversion. In this paper, a kernel least square regression algorithm has been developed for nonlinear approximation of subpixel proportions. This procedure includes two steps. The first step is to select the feature vectors by defining a global criterion to characterize the image data structure in the feature space and the second step is the projection of pixels onto the feature vectors and the application of classical linear regressive algorithm. Experiments using simulated data, synthetic data and Enhanced Thematic Mapper (ETM)+ data have been carried out, and the results demonstrate that the proposed method can improve proportion estimation. By using the simulated and synthetic data, over 85% of the total pixels in the image are found to lie between the 10% difference lines, and the root mean square error (RMSE) is less than 0.09. Using the real data, the proposed method can also perform satisfactorily with an average RMSE of about 0.12. This algorithm was also compared with other widely used kernel based algorithms, i.e. support vector regression and radial basis function neutral network and the results show that the proposed algorithm outperforms other algorithms about 5% in subpixel proportion estimation.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160600993454

Affiliations: 1: The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Peoples Republic of China 2: The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Peoples Republic of China,Spatial Information Research Center, Fuzhou University, Peoples Republic of China 3: Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong

Publication date: January 1, 2007

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more