Skip to main content

A derivation of roughness correlation length for parameterizing radar backscatter models

Buy Article:

$63.00 plus tax (Refund Policy)

Surface roughness is a key parameter of radar backscatter models designed to retrieve surface soil moisture (S) information from radar images. This work offers a theory-based approach for estimating a key roughness parameter, termed the roughness correlation length (L c). The L c is the length in centimetres from a point on the ground to a short distance for which the heights of a rough surface are correlated with each other. The approach is based on the relation between L c and h RMS as theorized by the Integral Equation Model (IEM). The h RMS is another roughness parameter, which is the root mean squared height variation of a rough surface. The relation is calibrated for a given site based on the radar backscatter of the site under dry soil conditions. When this relation is supplemented with the site specific measurements of h RMS, it is possible to produce estimates of L c. The approach was validated with several radar images of the Walnut Gulch Experimental Watershed in southeast Arizona, USA. Results showed that the IEM performed well in reproducing satellite-based radar backscatter when this new derivation of L c was used as input. This was a substantial improvement over the use of field measurements of L c. This new approach also has advantages over empirical formulations for the estimation of L c because it does not require field measurements of S for iterative calibration and it accounts for the very complex relation between L c and h RMS found in heterogeneous landscapes. Finally, this new approach opens up the possibility of determining both roughness parameters without ancillary data based on the radar backscatter difference measured for two different incident angles.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: 1: USDA ARS Southwest Watershed Research Center, Tucson, Arizona, 85719 USA 2: Embrapa Cerrados, Planaltina, 08223 Brazil 3: US Army Engineer Research and Development Center, Topographic Engineering Center, Alexandria, Virginia, 22315 USA 4: Office of Arid Land Studies, University of Arizona, Tucson, Arizona, 85719 USA

Publication date: 2007-01-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more