Skip to main content

Maximum likelihood classification combined with spectral angle mapper algorithm for high resolution satellite imagery

Buy Article:

$55.00 plus tax (Refund Policy)

The generation of precise land cover classification maps is an important application of high resolution satellite multispectral imagery. In this study, Spectral Angle Mapper algorithm (SAM) was used to extract the spectral characteristics from multispectral imagery. The spectral angle between neighbouring pixels was calculated. The distribution of spectral characteristics was derived from the average and variance of the calculated spectral angle in a 3×3 window of the image. The extracted spectral characteristics were combined with original multispectral imagery, and the data were classified by the maximum likelihood method. This approach was applied to Quickbird multispectral imagery. The extracted spectral characteristics highlighted boundaries between different types of land cover. The method proposed in this study exhibits an increase in overall classification accuracy relative to the original maximum likelihood method.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Miyagi University, Sendai 9820215, Japan

Publication date: 2007-01-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more