Skip to main content

Differentiation of semi-arid vegetation types based on multi-angular observations from MISR and MODIS

Buy Article:

$60.90 plus tax (Refund Policy)

Abstract:

Mapping accurately vegetation type is one of the main challenges for monitoring arid and semi-arid grasslands with remote sensing. The multi-angle approach has been demonstrated to be useful for mapping vegetation types in deserts. The current paper presents a study on the use of directional reflectance derived from two sensor systems, using two different models to analyse the data and two different classifiers as a means of mapping vegetation types. The multiangle imaging spectroradiometer (MISR) and the moderate resolution imaging spectroradiometer (MODIS) provide multi-spectral and angular, off-nadir observations. In this study, we demonstrate that reflectance from MISR observations and reflectance anisotropy patterns derived from MODIS observations are capable of working together to increase classification accuracy. The patterns are described by parameters of the modified Rahman-Pinty-Verstraete and the RossThin-LiSparseMODIS bidirectional reflectance distribution function (BRDF) models. The anisotropy patterns derived from MODIS observations are highly complementary to reflectance derived from radiances observed by MISR. Support vector machine algorithms exploit the information carried by the same data sets more effectively than the maximum likelihood classifier.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160601085995

Affiliations: 1: Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043 2: USDA, ARS Jornada Experimental Range, Las Cruces, New Mexico 88003 3: NASA Jet Propulsion Laboratory, Pasadena, California 91109

Publication date: January 1, 2007

More about this publication?
tandf/tres/2007/00000028/00000006/art00025
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more