Skip to main content

Spectrally segmented principal component analysis of hyperspectral imagery for mapping invasive plant species

Buy Article:

$60.90 plus tax (Refund Policy)


Principal component analysis (PCA) is one of the most commonly adopted feature reduction techniques in remote sensing image analysis. However, it may overlook subtle but useful information if applied directly to the analysis of hyperspectral data, especially for discriminating between different vegetation types. In order to accurately map an invasive plant species (horse tamarind, Leucaena leucocephala) in southern Taiwan using Hyperion hyperspectral imagery, this study developed a spectrally segmented PCA based on the spectral characteristics of vegetation over different wavelength regions. The developed algorithm can not only reduce the dimensionality of hyperspectral imagery but also extracts helpful information for differentiating more effectively the target plant species from other vegetation types. Experiments conducted in this study demonstrated that the developed algorithm performs better than correlation-based segmented principal component transformation (SPCT) and conventional PCA (overall accuracy: 86%, 76%, 66%; kappa value: 0.81, 0.69, 0.57) in detecting the target plant species, as well as mapping other vegetation covers.

Document Type: Research Article


Affiliations: 1: Centre for Space and Remote Sensing Research, National Central University, Zhong-Li, Taoyuan 320, Taiwan (ROC) 2: Institute of Policy and Planning Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

Publication date: January 1, 2007

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more