Skip to main content

Using multi-directional high-resolution imagery from POLDER sensor to retrieve leaf area index

Buy Article:

$63.00 plus tax (Refund Policy)


Multi-directional satellite optical imagery collected at high spatial resolution potentially allows improving the accuracy of biophysical variable retrieval. The improvements result from the inclusion of the directional anisotropy of the target, which provides additional information related to vegetation structural properties. The research presented here analyses airborne imagery and ground reference data in order to quantify the accuracy of the retrieval methods for LAI (leaf area index). Both variables are estimated through processing of airborne POLDER (POLarization and Directionality of Earth Reflectances) sensor images from an agricultural area. In a first step, the BRDF (Bi-directional Reflectance Distribution Function) of the surface is estimated using a simple parametric model, whose parameters where derived from fitting POLDER BRF (Bi-directional Reflectance Factor) measurements. LAI estimation was performed using two different approaches, both based on an artificial neural network designed to invert a 1D soil-vegetation radiative transfer model. The difference between the two methods is that one of them uses only the isotropic component of the BRDF parametric model and the other the full BRDF information, i.e. adding the anisotropic components. The algorithm using isotropic information shows a clear improvement when compared to semi-empirical approaches. Root mean square error between estimated and ground measured LAI values is 0.87. However, the method using the full BRDF information yielded poorer estimates, pointing out the difficulty of fully exploiting the multi-directional information. The performance decrease is partially explained by the incoherence between real and modelled BRDF measurements.

Document Type: Research Article


Affiliations: 1: ESA (European Space Agency), TEC-EEP, Keplerlaan 1, 2200AG - Noordwijk, The Netherlands 2: UPS (Université Paul Sabatier), CESBIO (Centre d'Etudes Spatiales de la BIOsphère), 31401, Toulouse, France 3: CNES (Centre National d'Etudes Spatiales), MEDIAS (MEDIterranean basin And Subtropical africa), 31401, Toulouse, France

Publication date: 2007-01-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more