Skip to main content

Temporal and spatial soil moisture change pattern detection in an agricultural area using multi‐temporal Radarsat ScanSAR data

Buy Article:

$60.90 plus tax (Refund Policy)


Monitoring the characteristics of spatially and temporally distributed soil moisture is important to the study of hydrology and climatology for understanding and calculating the surface water balance. The major difficulties in retrieving soil moisture with Synthetic Aperture Radar (SAR) measurements are due to the effects of surface roughness and vegetation cover. In this study we demonstrate a technique to estimate the relative soil moisture change by using multi‐temporal C band HH polarized Radarsat ScanSAR data. This technique includes two components. The first is to minimize the effects of surface roughness by using two microwave radar measurements with different incidence angles for estimation of the relative soil moisture change defined as the ratio between two soil volumetric moistures. This was done by the development of a semi‐empirical backscattering model using a database that simulated the Advanced Integral Equation Model for a wide range of soil moisture and surface roughness conditions to characterize the surface roughness effects at different incidence angles. The second is to reduce the effects of vegetation cover on radar measurements by using a semi‐empirical vegetation model and the measurements obtained from the optical sensors (Landsat TM and AVHRR). The vegetation correction was performed based on a first‐order semi‐empirical backscattering vegetation model with the vegetation water content information obtained from the optical sensors as the input. For the validation of this newly developed technique, we compared experimental data obtained from the Southern Great Plain Soil Moisture Experiment in 1997 (SGP97) with our estimations. Comparison with the ground soil moisture measurements showed a good agreement for predication of the relative soil moisture change, in terms of ratio, with a Root Mean Square Error (RMSE) of 1.14. The spatially distributed maps of the relative soil moisture change derived from Radarsat data were also compared with those derived from the airborne passive microwave radiometer ESTAR. The maps of the spatial characteristics of the relative soil moisture change showed comparable results.

Document Type: Research Article


Affiliations: 1: Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration (LRCVES/CMA), Zhongguancun Nandajie 46, Beijing 100081, China 2: Institute for Computational Earth System Science, 6808 Ellison Hall, University of California, Santa Barbara, CA 93106 3: Institute of Remote Sensing Application, Chinese Academy of Science, Datun Road 17, Beijing 100010, China

Publication date: October 10, 2006

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more