Skip to main content

Neural network training: Using untransformed or log‐transformed training data for the inversion of ocean colour spectra?

Buy Article:

$59.35 plus tax (Refund Policy)


A bio‐optical model coupled with the radiative transfer model Hydrolight was used to create 18,000 synthetic ocean colour spectra corresponding to open ocean and coastal waters. The bio‐optical model took into account the optical properties of the three oceanic constituents, chlorophyll‐a, suspended non‐chlorophyllous particles and coloured dissolved organic matter (CDOM) as well as of normal seawater. The resulting spectra were input into multilayer perceptron neural network algorithms with the aim of computing the original concentrations of chlorophyll‐a, non‐chlorophyllous particles and CDOM initially input into the bio‐optical model. The process of training the neural networks is essential for the accuracy of the inversion the neural net performs on the coupled bio‐optical and radiative transfer models. The objective of this paper is to investigate the performance difference of a neural network trained with untransformed as opposed to logarithmically transformed data.

Document Type: Research Article


Affiliations: 1: Institute für meereskunde, University of Hamburg, Bundesstrasse 53, 20253 Hamburg, Germany 2: University of Southampton Astronautics Group 3: Southampton Oceanography Centre, Highfield, Southampton, Hampshire SO17 1BJ, UK 4: Sequoia Scientific, Inc. Westpark Technical Center, 15317 NE 90th Street, Redmond, WA 98052

Publication date: May 1, 2006

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more