Skip to main content

Graph‐based change detection in geographic information using VHR satellite images

Buy Article:

$55.00 plus tax (Refund Policy)

In this paper we examine a system based on computer vision for automated detection of change and anomalies in GIS road networks using very high resolution satellite images. The system consists of a low‐level feature detection process, which extracts road junctions, and a high‐level matching process, which uses graph matching to find correspondences between the detected image information and the road vector data. The matching process is based on continuous relaxation labelling. It is driven by spatial relations between the objects and takes into account different errors that can occur. The result is an object‐to‐object mapping between image and vector dataset. The mapping result can be used to calculate a rubbersheeting transformation which is able to compensate for local distortions. A measure of change is defined based on the number of null assignments. We show how combined with a condition to characterize acceptable errors, this measure is useful and reliable to characterize inconsistencies between image and vector data.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Telecommunication and Information Processing (TELIN), Ghent University, St. Pietersnieuwstraat 41, B‐9000 Gent, Belgium

Publication date: 2006-05-10

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more