Skip to main content

Multiscale fuel type mapping in fragmented ecosystems: preliminary results from hyperspectral MIVIS and multispectral Landsat TM data

Buy Article:

$55.00 plus tax (Refund Policy)

This study aims to ascertain how well remote sensing data can characterize fuel type at different spatial scales in fragmented ecosystems. For this purpose, multisensor and multiscale remote sensing data such as hyperspectral Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) and Landsat Thematic Mapper (TM) data acquired in 1998 were analysed for a test area in southern Italy characterized by mixed vegetation covers and complex topography. Fieldwork fuel type recognition, performed at the same time as remote sensing data acquisitions, was used to assess the results obtained for the considered test areas. Results from preliminary analysis showed that the use of unmixing techniques allows an increase in accuracy of around 7% compared with the accuracy level obtained by applying a widely used classification algorithm.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: National Research Council, Institute of Methodologies of Environmental Analysis, C. da S. Loja, Tito Scalo, Potenza 85050, Italy

Publication date: 2006-02-10

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more