An efficient texture image segmentation algorithm based on the GMRF model for classification of remotely sensed imagery

$61.74 plus tax (Refund Policy)

Buy Article:


Texture analysis of remote sensing images based on classification of area units represented in image segments is usually more accurate than operating on an individual pixel basis. In this paper we suggest a two‐step procedure to segment texture patterns in remotely sensed data. An image is first classified based on texture analysis using a multi‐parameter and multi‐scale technique. The intermediate results are then treated as initial segments for subsequent segmentation based on the Gaussian Markov random field (GMRF) model. The segmentation procedure seeks to merge pairs of segments with the minimum variance difference. Experiments using real data prove that the two‐step procedure improves both computational efficiency and accuracy of texture classification.

Document Type: Research Article


Affiliations: 1: International Institute for Earth System Science, Nanjing University, Nanjing, 210093, China 2: Center for Assessment and Monitoring of Forest and Environmental Resources, 151 Hilgard Hall, University of California, Berkeley, CA 94720‐3110

Publication date: November 20, 2005

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more