Skip to main content

Automatic detection of oil spills from SAR images

Buy Article:

$59.35 plus tax (Refund Policy)

Abstract:

A probabilistic method has been developed that distinguishes oil spills from other similar sea surface features in synthetic aperture radar (SAR) images. It considers both the radiometric and the geometric characteristics of the areas being tested. In order to minimize the operator intervention, it adopts automatic selection criteria to extract the potentially polluted areas from the images. The method has an a priori percentage of correct classification higher than 90% on the training dataset; the performance is confirmed on a different dataset of verified slicks. Some analyses have been conducted using images with different radiometric and geometric resolutions to test its suitability with SAR images different from European Remote Sensing (ERS) satellite ones. The system and its ability to detect and classify oil and non-oil surface features are described. Starting from a set of verified oil spills detected offshore and over the coastline, the ability of SAR to reveal oil spills is tested by analysing wind intensity, deduced from the image itself, and the distance from the coast.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160512331326558

Affiliations: Universit√† del Piemonte Orientale ‘Amedeo Avogadro', Via Bellini 25/g, 15100 Alessandria, Italy

Publication date: March 1, 2005

More about this publication?
tandf/tres/2005/00000026/00000006/art00007
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more