Skip to main content

An automatic nonlinear correlation approach for processing of hyperspectral images

Buy Article:

$60.90 plus tax (Refund Policy)

Abstract:

Hyperspectral imaging technology demands sophisticated processing techniques that offer precise characterizations of complex spectral signatures. A nonlinear correlator structure is implemented for interference mitigation and object recognition. A key asset is the correlator's applicability to both the spatial (two-dimensional) and spectral (one-dimensional) domains, thus ideal for hyperspectral processing. The process consists of a standard convolution summed with a nonlinear adaptive term. The premise is the same in each case but the mathematical implementation is different. By performing the correlation calculations in the frequency domain, the processing algorithm is efficient, robust, and well suited for implementation on a parallel processing computational architecture. The nonlinear correlator depends on two parameters and an algorithm to determine these parameters based only on the input image (two-dimensional) or spectral signature (one-dimensional) is presented. Based on the results with the selected spatial and spectral templates, a target is identified and the spatial coordinates as well as the spectral signature are input to the final fusion stage, which analyses both spectral and spatial signatures for a correct target identification. Several examples are given and insights to template (mask) selection are provided.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160410001680455

Publication date: November 1, 2004

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more