Identification of burnt areas in Mediterranean forest environments from ERS-2 SAR time series

$63.37 plus tax (Refund Policy)

Buy Article:

Abstract:

This article presents the multitemporal analysis of a Synthetic Aperture Radar (SAR) image series of an area affected by several fires during the years 2000 and 2001 in Central Portugal. An initial study was carried out to determine the best conditions to acquire optimal SAR imagery. Burnt areas were classified using neural network techniques. The neural network classification presented an overall accuracy of 92.11% using an entire European Remote Sensing (ERS) SAR time series, whereas an accuracy of 89.90% was achieved when using a subset of scenes selected through principal components analysis (PCA). Finally, the burnt area maps obtained were compared to estimates from the Portuguese Forest Services (DGF, Direcção Geral das Florestas) and the European Forest Fires Damage Assessment System (EFFDAS). This comparison showed that the SAR-based methodology provided higher accuracy than the other systems. The sensitivity of the SAR data to determine burnt severity allowed the discrimination of partially burnt areas and isles within the perimeter of the fire. These results show that the analysis of the temporal variation in the ERS-SAR backscatter coefficient permits the extraction of accurate and reliable information on the position and extent of burnt areas in Mediterranean forest environments.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160412331269715

Publication date: November 1, 2004

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more