Skip to main content

Measurement and comparison of Leaf Area Index estimators derived from satellite remote sensing techniques

Buy Article:

$60.90 plus tax (Refund Policy)


Leaf Area Index (LAI) is an important biophysical characteristic of vegetation that is directly related to rates of atmospheric gas exchange, biomass partitioning, and productivity. Mapping and monitoring LAI over scales from landscapes to regions is essential for understanding medium-scale biophysical properties and how these properties affect biogeochemical cycling, biomass accumulation, and primary productivity. This study developed and verified several models to estimate LAI using in situ field measurements, Landsat Thematic Mapper imagery, vegetation indices, simple and multiple regression, and artificial neural networks (ANNs). It was shown that while multiple band regression and regression with individual vegetation indices can estimate LAI, the most accurate way to estimate regional scale LAI is to train an ANN using in situ LAI data and remote sensing brightness values.

Document Type: Research Article


Affiliations: 1: Department of Geography, Geology, and Anthropology Indiana State University Terre Haute IN 47809 USA, Email: 2: Department of Geography University of Florida Gainesville FL 32611 USA, Email:

Publication date: October 1, 2004

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more