If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas

$61.74 plus tax (Refund Policy)

Buy Article:

Abstract:

Landslides are natural hazards that cause havoc to both property and life every year, especially in the Himalayas. Landslide hazard zonation (LHZ) of areas affected by landslides therefore is essential for future developmental planning and organization of various disaster mitigation programmes. The conventional Geographical Information System (GIS)-based approaches for LHZ suffer from the subjective weight rating system where weights are assigned to different causative factors responsible for triggering a landslide. Alternatively, artificial neural networks (ANNs) may be applied. These are considered to be independent of any strict assumptions or bias, and they determine the weights objectively in an iterative fashion. In this study, an ANN has been applied to generate an LHZ map of an area in the Bhagirathi Valley, Himalayas, using spatial data prepared from IRS-1B satellite sensor data and maps from other sources. The accuracy of the LHZ map produced by the ANN is around 80% with a very small training dataset. The distribution of landslide hazard zones derived from ANN shows similar trends as that observed with the existing landslides locations in the field. A comparison of the results with an earlier produced GIS-based LHZ map of the same area by the authors (using the ordinal weight rating method) indicates that ANN results are better than the earlier method.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/0143116031000156819

Affiliations: 1: Department of Civil Engineering Indian Institute of Technology Roorkee Roorkee 247 667 India 2: Department of Earth Sciences Indian Institute of Technology Roorkee Roorkee 247 667 India

Publication date: February 1, 2004

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more