Skip to main content

An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas

Buy Article:

$60.90 plus tax (Refund Policy)


Landslides are natural hazards that cause havoc to both property and life every year, especially in the Himalayas. Landslide hazard zonation (LHZ) of areas affected by landslides therefore is essential for future developmental planning and organization of various disaster mitigation programmes. The conventional Geographical Information System (GIS)-based approaches for LHZ suffer from the subjective weight rating system where weights are assigned to different causative factors responsible for triggering a landslide. Alternatively, artificial neural networks (ANNs) may be applied. These are considered to be independent of any strict assumptions or bias, and they determine the weights objectively in an iterative fashion. In this study, an ANN has been applied to generate an LHZ map of an area in the Bhagirathi Valley, Himalayas, using spatial data prepared from IRS-1B satellite sensor data and maps from other sources. The accuracy of the LHZ map produced by the ANN is around 80% with a very small training dataset. The distribution of landslide hazard zones derived from ANN shows similar trends as that observed with the existing landslides locations in the field. A comparison of the results with an earlier produced GIS-based LHZ map of the same area by the authors (using the ordinal weight rating method) indicates that ANN results are better than the earlier method.

Document Type: Research Article


Affiliations: 1: Department of Civil Engineering Indian Institute of Technology Roorkee Roorkee 247 667 India 2: Department of Earth Sciences Indian Institute of Technology Roorkee Roorkee 247 667 India

Publication date: 2004-02-01

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more