Skip to main content

DART: a 3D model for simulating satellite images and studying surface radiation budget

Buy Article:

$63.00 plus tax (Refund Policy)

DART (Discrete Anisotropic Radiative Transfer) is a radiative transfer model that simulates remotely acquired images. It was originally developed to work in the short wavelengths (0.3-3 µm) within 3D natural scenes that are represented as matrices of rectangular cells containing trees, shrubs, grass, soil, etc. DART was recently modified to extend its domain of application and to improve its accuracy. This paper summarizes the major features of DART and presents the changes that were implemented for improving its accuracy. Presently, this model works with natural and urban landscapes, on the whole optical domain (thermal infrared included) and with a multispectral approach that uses optical data bases from 0.3 µm up to 15 µm. It simulates radiative transfer in the whole 'atmosphere-Earth' system and it accounts for the instrumental transfer function. Three major changes allowed us to improve DART accuracy by a factor of three: more accurate simulation of single and multiple scattering, use of a scheme that oversamples DART cells and a better account of the direction of radiation that gives rise to multiple scattered radiation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Centre d'Etudes Spatiales de la BIOsphère, Paul Sabatier University CNES-CNRS 18 avenue Edouard Belin BPi 2801-31401, Toulouse, Cedex 4 France

Publication date: 2004-01-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more