Skip to main content

A comparison of methods to relate grass reflectance to soil metal contamination

Buy Article:

$63.00 plus tax (Refund Policy)


Grass-dominated vegetation covers large areas of the Dutch river floodplains. Remotely sensed data on the conditions under which this vegetation grows may yield information about the degree of soil contamination. This paper explores the relationship between grassland canopy reflectance and zinc (Zn) contamination in the soil under semi-field conditions. A field radiometer was used to record reflectance spectra of perennial ryegrass (Lolium perenne) in an experimental field with Zn concentrations in the soil ranging from 32 to 1800 mg kg−1. Several spectral vegetation indices (VIs) and a multivariate approach using partial least squares (PLS) regression were investigated to evaluate their potential use in estimating Zn contamination levels. Compared to the best PLS model (RMSEP=181.4 mg kg−1), the narrow band vegetation index MSAVI2mm performed better (RMSEP=162.9 mg kg−1). Both MSAVI2mm and PLS gave a high user accuracy for the strongly contaminated soil class (100% and 91%, respectively), while the total accuracy was satisfactory (60% and 55%, respectively). Results from this feasibility study indicate the potential of using remote sensing techniques for the classification of contaminated areas in river floodplains. But as the results from this study may be both resolution- and location-dependent, research on field and image scale is now required to test the established relations and to assess their susceptibility to seasonal influences, species heterogeneity, and increased levels of spectral noise.

Document Type: Research Article


Affiliations: 1: Laboratory for Analytical Chemistry University of Nijmegen Toernooiveld 1 6525 ED Nijmegen The Netherlands 2: Department of Environmental Studies University of Nijmegen Toernooiveld 1 6525 ED Nijmegen The Netherlands

Publication date: 2003-12-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more