If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Classification of SAR images using a general and tractable multiplicative model

$61.74 plus tax (Refund Policy)

Buy Article:

Abstract:

Among the frameworks for Synthetic Aperture Radar (SAR) image modelling and analysis, the multiplicative model is very accurate and successful. It is based on the assumption that the observed random field is the result of the product of two independent and unobserved random fields: X and Y. The random field X models the terrain backscatter and, thus, depends only on the type of area to which each pixel belongs. The random field Y takes into account that SAR images are the result of a coherent imaging system that produces the well-known phenomenon called speckle noise, and that they are generated by performing an average of n statistically independent images (looks) in order to reduce the noise effect. There are various ways of modelling the random field X; recently the Γ−1/2(α, ) distribution was proposed. This, with the usual Γ1/2(n, n) distribution for the amplitude speckle, resulted in a new distribution for the return: the (α, , n) law. The parameters α and depend only on the ground truth, and n is the number of looks. The advantage of this distribution over the ones used in the past is that it models very well extremely heterogeneous areas like cities, as well as moderately heterogeneous areas like forests and homogeneous areas like pastures. As the ground data can be characterized by the parameters α and , their estimation in each pixel generates parameter maps that can be used as the input for classification methods. In this work, moment estimators are used on simulated and on real SAR images and, then, a supervised classification technique (Gaussian maximum likelihood) is performed and evaluated. Excellent classification results are obtained.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/0143116021000053274

Affiliations: 1: Departamento de Computación, Pabellón I, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Universidad de Buenos Aires 1428 Buenos Aires Argentina 2: Centro de Informática Universidade Federal de Pernambuco Caixa Postal 7851 50732-970 Recife PE Brazil, Email: frery@cin.ufpe.br 3: Facultad de Matemática, Astronomía y Física, Universidad Nacìonal de Córdoba Ciudad Universitaria 5000 Córdoba Argentina

Publication date: September 1, 2003

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more