Skip to main content

Classification of SAR images using a general and tractable multiplicative model

Buy Article:

$55.00 plus tax (Refund Policy)

Among the frameworks for Synthetic Aperture Radar (SAR) image modelling and analysis, the multiplicative model is very accurate and successful. It is based on the assumption that the observed random field is the result of the product of two independent and unobserved random fields: X and Y. The random field X models the terrain backscatter and, thus, depends only on the type of area to which each pixel belongs. The random field Y takes into account that SAR images are the result of a coherent imaging system that produces the well-known phenomenon called speckle noise, and that they are generated by performing an average of n statistically independent images (looks) in order to reduce the noise effect. There are various ways of modelling the random field X; recently the Γ−1/2(α, ) distribution was proposed. This, with the usual Γ1/2(n, n) distribution for the amplitude speckle, resulted in a new distribution for the return: the (α, , n) law. The parameters α and depend only on the ground truth, and n is the number of looks. The advantage of this distribution over the ones used in the past is that it models very well extremely heterogeneous areas like cities, as well as moderately heterogeneous areas like forests and homogeneous areas like pastures. As the ground data can be characterized by the parameters α and , their estimation in each pixel generates parameter maps that can be used as the input for classification methods. In this work, moment estimators are used on simulated and on real SAR images and, then, a supervised classification technique (Gaussian maximum likelihood) is performed and evaluated. Excellent classification results are obtained.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Departamento de Computación, Pabellón I, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Universidad de Buenos Aires 1428 Buenos Aires Argentina 2: Centro de Informática Universidade Federal de Pernambuco Caixa Postal 7851 50732-970 Recife PE Brazil, Email: [email protected] 3: Facultad de Matemática, Astronomía y Física, Universidad Nacìonal de Córdoba Ciudad Universitaria 5000 Córdoba Argentina

Publication date: 2003-09-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more