Skip to main content

Evaluating different NDVI composite techniques using NOAA-14 AVHRR data

Buy Article:

$55.00 plus tax (Refund Policy)

Normalized Difference Vegetation Index (NDVI) data derived from Advanced Very High Resolution Radiometer (AVHRR) data are influenced by cloud contamination, which is common in individual AVHRR scenes. Maximum value compositing (MVC) of NDVI data has been employed to minimize cloud contamination. Two types of weekly NDVI composites were built for crop seasons in summer: one from all available AVHRR data (named the traditional NDVI composite) and the other from solely cloud-free AVHRR data (named the conditional NDVI composite). The MVC method was applied to both composites. The main objective of this study was to compare the two types of NDVI composites using Texas data. The NDVI seasonal profiles produced from the conditional NDVI composites agreed with the field measured leaf area index (LAI) data, reaching maximum values at similar times. However, the traditional NDVI composites showed irregular patterns, primarily due to cloud contamination. These study results suggest that cloud detection for individual AVHRR scenes should be strongly recommended before producing weekly NDVI composites. Appropriate AVHRR data pre-processing is important for composite products to be used for short-term vegetation condition and biomass studies, where the traditional NDVI composite data do not eliminate cloud-contaminated pixels. In addition, this study showed that atmosphere composition affected near-infrared reflectance more than visible reflectance. The near-infrared reflectance was increasingly adjusted through atmospheric correction.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: 1: Spatial Science Laboratory, Department of Forest Science, Texas A&M University, College Station, Texas 77843, USA 2: Canada Center for Remote Sensing, 588 Booth Street, Ottawa, Ontario, Canada K1A 0Y7 3: USDA, Agricultural Research Service, 808 E. Blackland Road, Temple, Texas 76502, USA

Publication date: 2003-09-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more